

# GC1000 Dual Fuel Conversion

📞 +1 413 233 1888

www.governors-america.com

# **DUAL FUEL DIESEL - GASEOUS CONVERSION**

GACs dual fuel solution controls the flow of gaseous fuel, and does not affect the diesel fuel system, meaning there is no need for governing system updates on the diesel side. Our solution requires no modifications to the core engine or to the factory fuel management system.

A dual fuel system allows for the simultaneous combustion of 2 fuels. Using the existing diesel system, gaseous fuel is introduced. As load increases, gas is increased into the system, supporting load with gaseous fuel to maintain the desired speed / load regulation. The gaseous controller automatically controls the ratio of diesel to gaseous fuel.

This solution requires no modifications to the core engine or to the factory fuel management system. A dual-fuel engine can operate on 100 percent diesel fuel or a mixture of diesel and gas fuel, with an optimal mixture of 30% diesel and 70% natural gas, delivering the same power, torque, and transient response as the single fuel diesel engine.



This simple, clean solution automatically controls gas flow based on increased demand. A table in the gaseous controller software controls the stepper motor increment of gaseous fuel to support load changes.



# 2 GC1000 CONTROLLER SPECIFICATIONS

| PERFORMANCE                                       |                                                 |  |  |  |
|---------------------------------------------------|-------------------------------------------------|--|--|--|
| Isochronous Operation /<br>Steady-State Stability | ± 0.25 %                                        |  |  |  |
| Speed Range / Governor                            | 400 - 10 kHz (Mag Pickup)                       |  |  |  |
| Speed Drift with Temperature                      | < ±1 % MAX                                      |  |  |  |
| Idle Adjust                                       | Full Range                                      |  |  |  |
| INPUT                                             | OUTPUT                                          |  |  |  |
| Supply                                            | 12 - 24 V DC Battery Systems<br>(6.5 - 33 V DC) |  |  |  |
| Polarity                                          | Negative Ground<br>(Case Isolated)              |  |  |  |
| Power Consumption                                 | 100 mA MAX. Continuous plus<br>Stepper, and MIL |  |  |  |
| Speed Sensor Signal                               | 0.5 - 120 V RMS                                 |  |  |  |
| PHYSICAL                                          |                                                 |  |  |  |
| Dimension                                         | See Section 4, GC1000 Installation              |  |  |  |
| Weight                                            | 1.1 lbf [0.49 kgf]                              |  |  |  |
| Mounting                                          | Any position, vertical preferred                |  |  |  |
| COMPLIANCE / STANDARDS                            |                                                 |  |  |  |
| Agency                                            | CE and RoHS Requirements                        |  |  |  |
| Communications                                    | RS-232-C, IEEEE J1939                           |  |  |  |

| PARAMETERS            |                              |  |  |  |
|-----------------------|------------------------------|--|--|--|
| Flywheel Teeth        | 50 - 250                     |  |  |  |
| Fixed Speed Settings* | 0 - MAX rpm                  |  |  |  |
| Overspeed Settings*   | 0 - MAX rpm                  |  |  |  |
| Starting Fuel         | 0 - 100 %                    |  |  |  |
| Fuel Valve Setpoint   | 0 - 100 %                    |  |  |  |
| ENVIRONMENTAL         |                              |  |  |  |
| Temperature Range     | -40 to 80 °C [-40 to 185 °F] |  |  |  |
| Relative Humidity     | up to 95 %                   |  |  |  |
| RELIABILITY           |                              |  |  |  |
| √ibration             | 7g @ 20 - 2000 Hz            |  |  |  |
| Shock                 | 20 g Peak                    |  |  |  |
| Testing               | 100% Functional Testing      |  |  |  |
|                       |                              |  |  |  |

\*Maximum RPM is based on the Flywheel Teeth. RPM = Frequency x 60 / Flywheel Teeth. Maximum Frequency is 10,000 Hz timing retard/ advance.

# WARNINGS AND NOTICES



Shut off the gas supply at the main manual shutoff valve before installing or servicing the control. Failure to shut off the gas supply can result in the release of gas during installation or servicing, which can lead to an explosion or fire, and may result in severe personal injury or death.



The engine, turbine, or other type of prime mover should be equipped with an overspeed shutdown device to protect against runaway or damage to the prime mover with possible personal injury, loss of life, or property damage. The overspeed shutdown device must be totally independent of the prime mover control system. An overtemperature or overpressure shutdown device may also be needed for safety, as appropriate.



Components vary by engine. See your GAC representative before ordering parts or installing this solution.



GAC makes no warranties for the conception and engineering of the technical installation as a whole. This is the responsibility of the user. It is the users responsibility to verify whether the performance features of our devices will meet the intended purposes. The user is responsible for correct commissioning of the total installation.



The examples, data and any other information contained in this manual are intended elusively as instruction aids and should not be used in any particular application without independent testing and verification by the person making the application.



This manual describes how to install and initially tune a dual fuel system using a GC1000 controller. Read the entire manual and all related publications before installing, operating, or servicing this equipment. Practice all local safety rules. Failure to follow these instructions can result in personal injury and/or property damage and are not the responsibility of GAC.



This solution is not intended for highway use.

# **3 GASEOUS CONVERSION COMPONENT LIST**

The following components are generally used to create this gaseous fuel system solution. Components vary by engine. See your GAC representative before ordering parts or installing this solution.

| COMPONENT                              | GAC PART NUMBER  | DESCRIPTION                                                  |
|----------------------------------------|------------------|--------------------------------------------------------------|
| Dual Fuel Controller                   | GC1000           | Diesel to Dual Fuel Controller                               |
| DF Mating Connector                    | EC1501           | Connector J1 (35 pin)                                        |
| Stepper Control                        | VFC106           | Fuel Control Valve with stepper motor                        |
| Stepper Mating Connector               | EC1507           | 4-pin Delphi Mating Connector for Gaseous Fuel Control Valve |
| Zero Pressure Gas Regulator            | RPR10X           | Regulator with NPT fittings                                  |
| Exhaust Gas Temperature Sensor (EGT)   | STE101           | Type K Thermocouple w/ Mini-TC Connector and Mate, 1/4 NPT   |
| Gas Shutoff Solenoid                   | SOS10X-X         | Shutoff solenoid                                             |
| Fuse Holder Kit                        | EC1505           | Fuse Holder Assembly                                         |
| Magnetic Speed Pickup                  | MSP6732C         | Magnetic Speed Sensor                                        |
| RS232 PC Interface                     | EAM204           | USB to RS232 Adapter                                         |
| Serial Connector                       | EC1516           | DB-9 Female Connector                                        |
| Venturi Mixer                          | MXCxx of MXDxx   | Gaseous Fuel Mixer, per engine size                          |
| Current Transformer or Pressure Sensor | SPM1000<br>CT200 | Pressure Sensor 0-5V<br>CT 0-5V, 200 Amp                     |
| J1939 CAN Reader (Optional)            | JDR100           | J1939 Data Reader                                            |
| JDR Harness (Optional)                 | CH417-4572       | 15 ft JDR Harness Assembly                                   |
| JDR Mating Connector (Optional)        | EC1331           | JDR Connector                                                |
| Gaseous Fuel Filter (Optional)         | GFL10X           | Gas Fuel Filter                                              |
| Filter Element Replacement (Optional)  | GFL106/109       | Replacement Filter                                           |

# 4 HARDWARE SYSTEM OVERVIEW

The dual fuel solution consists of a Shutoff Solenoid (SOS), a zero Gas Pressure Regulator (RPR), a Fuel Control Valve (VFC) (stepper motor) and mixer and a Load Signal sensor. Gaseous fuel enters the inlet air stream through a shutoff solenoid, gas pressure regulator, fuel control valve and mixer. The GC1000 controls the percent of gaseous input to ensure constant engine speed is maintained under load. The solution does not control engine speed. Load changes are measured with a 0-5 V DC output sensor, such as a pressure sensor (BPS) or current transformer (CT). The exhaust gas temperature sensor and MSP provide general engine data to the controller. In a diesel engine gaseous fuel enters the engine's air intake through a mixer installed upstream of the turbo-charger(s) at a single-point admission. Incoming gas timing is determined either at RPM or based on load. The incoming gas supply is filtered prior to a pressure regulator and shutoff valves.



# **5** GASEOUS MIXER SELECTION AND INSTALLATION

The air-fuel mixer and control valve adjust the air to fuel ratio of the incoming gaseous fuel. While the Fuel Valve Control (VFC106) stepper motor controls the quantity of gas, the mixer controls the quality and volume of the gaseous mixture.

Using your engine size (liters) use the following table to determine the mixer size required for your system.

| Engine (Liters) | Throat Size [mm] | Mixer Part Number | Venturi Mixer Ring<br>Part Number |
|-----------------|------------------|-------------------|-----------------------------------|
| 3               | 32               | MXC32             | PL332-5                           |
| 3.5 -4          | 33               | MXC33             | PL333-5                           |
| 4 - 5           | 35               | MXC35             | PL334-5                           |
| 5 - 6           | 36               | MXC36             | PL335-5                           |
| 6 - 8           | 38               | MXC38             | PL336-5                           |
| 8 - 10          | 40               | MXC40             | PL343-5                           |
| 10-14           | 48               | MXD48             | PL347                             |
| 14-16           | 54               | MXD54             | PL344-5                           |



Standard mixers come with a mixer ring using 24 evenly spaced 5mm diameter gas flow holes.

Any change to air intake can change calibration including air filter or piping changes.

# MIXER



# 5 GASEOUS MIXER SELECTION AND INSTALLATION (CONTINUED)

### INSTALLING THE MIXER



The mixer must be installed closest to the air intake. The following figures apply to NATURALLY ASPIRATED ENGINES and TURBO ENGINES, showing the optimal mixer locations.



- 1. Clean the mounting area to the flange of the turbocharger inlet (or adapter) as well as the air filter connection from debris including old gaskets or previously applied sealants if present.
- 2. Install the mixer. Ensure the mixer is aligned in the correct orientation prior to seating it to the flange and that the fuel inlet is horizontal.

# 6 ZERO PRESSURE GAS REGULATOR

A Zero Pressure Gas Regulator (RPR) is attached to the fuel inlet port between the shutoff valve and gaseous fuel control valve to regulate the pressure to the assembly. The regulator has a reference / feedback port on top of the unit in order to regulate pressure. In most cases select the correct version of the regulator by choosing the size fitting you prefer and ensuring that the pressure drop is within the allowable range using the manufacturer provided data.

The mixer and fuel control valve assembly may have a different size fittings, select interconnect plumbing accordingly. Use the following table to select a zero pressure gas regulator.







The mounting location depends on the dimensions of the gas pressure regulator. The following regulators are available from GAC. GAC carries a full range of regulators so contact us if what you need is not on the list.

The gas regulator MUST be installed with the adjustment post pointing upward and the regulator body extended horizontally to guarantee consistent operation.

| GAC    | PIPE    | VENT       | MAX      | SWING RADIUS |           | DIMENSIC  | ONS IN[MM] |          |
|--------|---------|------------|----------|--------------|-----------|-----------|------------|----------|
| PN     | SIZE    | CONNECTION | PRESSURE | E IN [MM]    | Α         | В         | С          | D        |
| RPR102 | 0.75 in | 1/8 in NPT | 0.5 psi  | 3.6 [90]     | 4.7 [119] | 3.1 [79]  | 3.0 [79]   | 1.2 [30] |
| RPR103 | 0.75 in | 1/8 in NPT | 1.0 psi  | 4.3 [109]    | 5.7 [144] | 3.9 [98]  | 4.0 [102]  | 1.5 [37] |
| RPR106 | 1.0 in  | 1/8 in NPT | 5.0 psi  | 4.3 in [109] | 5.7 [144] | 3.9 [98]  | 4.0 [102]  | 1.5 [37] |
| RPR104 | 1.0 in  | 1/2 in NPT | 5.0 psi  | 5.4 [138]    | 9.0 [229] | 7.0 [178] | 6.0 [152]  | 2.4 [60] |
| RPR105 | 1.5 in  | 1/2 in NPT | 1.0 psi  | 5.4 [138]    | 9.0 [229] | 7.0 [178] | 6.0 [152]  | 2.4 [60] |

# 6 ZERO PRESSURE GAS REGULATOR (CONTINUED)

# ZERO GAS PRESSURE REGULATOR INSTALLATION



Ensure the fuel supply is shut off or disconnected when working on fuel system plumbing.

1. Position the gas pressure regulator no further than 6 ft [2 m] from gaseous fuel control valve and install an interconnect between the regulator and the gaseous fuel control valve using pipe unions or barbed fittings into the fuel inlet port for the mixer.

Fuel Flow

**Direction Indicator** 

Install with adjust-

ment post upright

- If pipe unions are used use an approved pipe thread sealant to ensure the connection is leak proof.
- If barbed fittings are used, ensure that properly-sized, high-quality, hose clamps are installed in pairs.
- 2. The zero pressure gas regulator is directional. This figure identifies the fuel flow direction indicator. Ensure the fuel flow direction is toward the mixer and fuel control valve during installation.
- 3. Connect a hose (or equivalent) to the feedback port that is long enough to reach the air cleaner or air filtration system connection point.
- Once all the plumbing is complete, enable the fuel supply, and ensure the inlet pressure to the regulator is positive but within the guidelines shown for your application considerations.
- 5. Complete the SmartVU GC Series startup configuration settings.
- 6. Remove the slotted cap on the regulator adjustment post to locate the pressure adjustment screw.

# 7 ELECTRONIC SHUTOFF SOLENOID INSTALLATION

The electronic gas shutoff solenoid (SOS) valve gives the gaseous controller authority over gas flow into the regulator, increasing over-all safety and performance. Initial gas flow is set up based on RPM or Load Signal (LS Fuel Threshold) as displayed in SmartVU. The following SOS hardware options are available.

| MODEL     | DESCRIPTION                                                                                                                    |
|-----------|--------------------------------------------------------------------------------------------------------------------------------|
| SOS100-12 | 12 V DC / 0.75 in [19.05 mm] / Direct-Acting / Pressure Diff 0 - 3 psi [0 - 0.2 bar] MIN-MAX                                   |
| SOS100-24 | 24 V DC / 0.75 in [19.05 mm] / Direct-Acting / Pressure Diff 0 - 3 psi [0 - 0.2 bar] MIN-MAX                                   |
| SOS101-12 | 12 V DC / 1.0 in [25.40 mm] / NPT Fittings / Pilot-Operated Quick Open / Pressure Diff 0.015 - 3 psi [0.001 - 0.2 bar] MIN-MAX |
| SOS101-24 | 24 V DC / 1.0 in [25.40 mm] / NPT Fittings / Pilot-Operated Quick Open / Pressure Diff 0.015 - 3 psi [0.001 - 0.2 bar] MIN-MAX |
| SOS102-12 | 12 V DC / 1.0 in [25.40 mm] / NPT Fittings / Direct-Acting / Pressure Diff 0 - 0.75 psi [0 - 0.5 bar] MIN-MAX                  |
| SOS102-24 | 24 V DC / 1.0 in [25.40 mm] / NPT Fittings / Direct-Acting / Pressure Diff 0 - 0.75 psi [0 - 0.5 bar] MIN-MAX                  |
| SOS103-12 | 12 V DC / 1.5 in [38.10 mm] / NPT Fittings / Pilot-Operated Quick Open / Pressure Diff 0.015 - 3 psi [0.001 - 0.2 bar] MIN-MAX |
| SOS103-24 | 24 V DC / 1.5 in [38,10 mm] / NPT Fittings / Pilot-Operated Quick Open / Pressure Diff 0.015 - 3 psi [0.001 - 0.2 bar] MIN-MAX |

### SHUTOFF SOLENOID INSTALLATION

- 1. Check the mounting pipes for dirt. Small particles of dirt can cause solenoid valves to malfunction.
- 2. Determine mounting placement:
  - Note flow direction when installing the valve as indicated by the arrow on the valve body.
  - Install the valve with the coil facing upward with a maximum deviation of 90° and the valve mounted horizontally with the vent pointing down to reduce the risk of collecting dirt in the valve. DO NOT install the valve with the top in the down position or in any location with excessive vibration.
  - · Never connect the coil to the power supply when it is not mounted on the solenoid valve.
- 3. Holding the valve in the desired position, use a wrench on the flats of the valve to hold it in place and tighten each pipe into the inlet and the outlet. Avoid pipe strain by aligning valve with piping. Do not allow the valve body to twist with the pipe during installation. If using pipe compound DO NOT apply compound to the valve as it may enter the valve and cause issues.
- 4. Tighten the nut sufficiently to make sure that the coil does not rotate or vibrate, but avoid over tightening in order to prevent damage. Recommended torque is 5 N·m (44.25 in-lbs).



# 8 VFC STEPPER MOTOR INSTALLATION

The VFC106 is directly controlled by the System Tuning table in the SmartVU software, which controls the percent of gas added into the system.



The fuel control valve is not a shutoff valve. The gaseous shutoff function is performed by a SOS or separate shut-off valve.

To install and set the VFC fuel valve:

1. Install the valve in series between the regulator and the mixer. Connection piping should be the same diameter as that currently in use.

**IMPORTANT** To avoid condensation in the electronics housing, do not install with motor facing down to avoid condensation in the electronics housing.

2. Allow room for the wiring harness from the GC1000 to the VFC106 to connect to the stepper motor input.



### 9

# **GC1000 CONTROLLER INSTALLATION**

The GAC Dual Fuel system revolves around the GC1000 controller. The location of each component will vary depending on your environment.

Dimensions: in [mm]



Vertical orientation allows for the draining of fluids in moist environments.







Mount in a cabinet, sealed metal box, or directly to the engine.



[40.9] 1.609

Do not mount next to turbocharger, exhaust manifold, or high temperatures.

### **GC1000 MOUNTING PROCEDURE**

- 1. Clean the mounting area of any dirt or debris.
- 2. Mount the GC1000 using a bracket or a direct to bulkhead mounting scheme using the dimensions and application information provided. If stand-offs or vibration isolators are required, make sure these are in place prior to proceeding.
- 3. Insert the mounting hardware selected into the four holes on GC1000. Pre-drill and tap the locations as required prior to installation.
- 4. Using standard values, apply torque evenly and gradually, and being sure not to over torque, tighten the selected mounting hardware to a maximum of 0.34-0.68 N·m (3.00 6.00 in-lbs) to avoid damaging the mounting tabs or flexing the controller.



# 10 MAGNETIC SPEED SENSOR INSTALLATION

Magnetic Speed Sensors (MSP) detects when ring gear teeth (flywheel) pass the tip of the sensor. The output signal is an AC sine wave whose frequency is converted to crankshaft revolutions per minute (RPM) by the GC1000. Further details on mag pickups options and mag pickup installation are available from your GAC representative.

### **MAG PICKUP INSTALLATION**

- 1. Ensure the engine is not running and the ignition switch is turned to the OFF position.
- 2. Install the magnetic pickup in the engine bell housing, ring gear case, or fabricated bracket.
- 3. Screw the speed sensor in until it touches a gear tooth and back it out 1/2 turn.
- 4. Adjust the pickup to a nominal 0.025 in [0.64 mm] 0.035 in.[0.89 mm] gap clearance between teeth and sensor.
- 5. Secure the speed sensor using the supplied locknut.
- Use an AC voltage meter to verify proper magnetic pickup installation. During cranking, sensor output should be greater than 1.0 V AC.



# 11 EXHAUST TEMPERATURE SENSOR INSTALLATION

The engine gaseous exhaust temperature (EGT) sensor is monitored by the GC1000 for engine protection in the event of a high exhaust temperature condition during operation. When the EGT limit is met, the GC1000 controller lowers the gaseous fuel flow to the engine and re-samples the exhaust temperature. If the EGT senses temperature has returned to an acceptable level the system restores the gas flow to table settings. If after 3 samples the temperature does not fall inside acceptable range as set in SmartVU the system shuts off the flow of gaseous fuel.





Use caution when installing the sensor. The sensor is easily damaged. Use Type-K wire and connectors only. Do not mix dissimilar metals.

# EGT TEMPERATURE SENSOR INSTALLATION

- 1. Mount the exhaust temperature probe in the engine exhaust outlet as near as possible to the point where all of the cylinders merge. Alternatively, the sensor can be placed in the manifold outlet pipe. Ensure the tip of the probe is well within the outlet exhaust flow.
- 2. For best results use a weld bung for installation access.
- 3. Mount the sensor using a 1/8 in NPT fitting.
- 4. Thread the sensor finger tight into the selected location.
- 5. Once stable, turn the sensor 2 full turns past finger tight.

# 12 LOAD SIGNAL SELECTION AND INSTALLATION

Load Signal is the measure of amperage draw being requested from the engine generator main to the GC1000 controller. This data can be provided by a 5 V DC sensor that provides 0 - 5 V DC output sensor. GC1000 does not control system load, it responds to sensed load and changes fuel input based on load. As load changes are sensed, the GC1000 System Tuning table implements pre-set fuel value increases, adding or removing fuel as indicated by load.

When using a turbo diesel engine, GAC recommends using a Boost Pressure Sensor to measure the increase in pressure requested as load increases.

When using a non-turbo (naturally aspirated) diesel engine, a Current Transformer (CT) is recommended. Other solutions may be possible. This manual details the CT and Pressure sensor options.

The current Load Signal value is displayed on the GC1000 SmartVU Advanced screen.

# BOOST PRESSURE SENSOR (BPS) FOR LOAD SIGNAL

When using a Pressure Sensor, the sensor monitors the turbo boost pressure within the intake manifold. The engine control unit uses this data to gauge the proper amount of fuel.

Mount the sensor on the engines' turbo boost intake manifold using a 1/8" NPT 27 fitting. Connections for the GAC sensor use the following connections: Red - 5+ Black - GND Yellow or Green - Out

### **CURRENT TRANSFORMER (CT) FOR LOAD SIGNAL**

When using a Current Transformer, the CT sends a load signal representing amperage from the engine generator main to the GC1000 controller.

Install the CT on one leg of the generator output to obtain the required measurements and connect it to the GC1000. Following the wiring installation diagram, connect the CT to the GC1000. The recommended CT is self powered and uses plus (+) for Signal and negative (-) for Ground.

If the CT or other selected sensor requires power or has other power requirements, wire the sensor or CT V+ to a power source other than the GC1000 ensure that power source and the GC1000 share a common ground.







# 13 DUAL-FUEL CONVERSION WIRING



### **GC1000 DUAL-FUEL WIRING (CONTINUED)** 13

### MATING CONNECTOR

### MATING CONNECTOR



### **GC1000 35-PIN CONNECTOR WIRING**

| PIN   | DESCRIPTION                   | COMMENT                                                   | WIRE   |
|-------|-------------------------------|-----------------------------------------------------------|--------|
| 1     | SOS                           | Shutoff Solenoid                                          | 16 AWG |
| 2     | RS232 Pin 3 Receive           | RS232 Communication Port                                  | 20 AWG |
| 3     | Not Used                      | NA                                                        | NA     |
| 4     | Not Used                      | NA                                                        | NA     |
| 5     | Load Signal                   | CT, BPS or other 0 - 5 v DC signal sensor                 | 20 AWG |
| 6     | Load Power                    | BPS or other 0 - 5 v DC signal sensor requiring power     | 20 AWG |
| 7     | Load Ground                   | CT, BPS or other 0 - 5 v DC signal sensor                 | 20 AWG |
| 8     | VFC Stepper Motor Connector A | Stepper Motor Control Output 1                            | 20 AWG |
| 9     | VFC Stepper Motor Connector D | Stepper Motor Control Output 2                            | 20 AWG |
| 10    | Not Used                      | NA                                                        | NA     |
| 11    | Not Used                      | NA                                                        | NA     |
| 12    | Mag Pickup Ground             | Magnetic Speed Pickup Sensor Ground                       | 20 AWG |
| 13    | RS232 Transmit                | RS232 Communication Port                                  | 20 AWG |
| 14    | Not Used                      | NA                                                        | NA     |
| 15    | Not Used                      | NA                                                        | NA     |
| 16    | Not Used                      | NA                                                        | NA     |
| 17    | Not Used                      | NA                                                        | NA     |
| 18    | MIL                           | Malfunction Indicator Lamp Output - 2 A                   | 16 AWG |
| 19    | EGT (+)                       | Exhaust Gas Temperature Input +                           | 20 AWG |
| 20    | Not Used                      | NA                                                        | NA     |
| 21    | VFC Stepper Motor Connector C | Stepper Motor Control Output 3                            | 20 AWG |
| 22    | VFC Stepper Motor Connector B | Stepper Motor Control Output 4                            | 20 AWG |
| 23    | RS232 Ground                  | RS232 Communication Port Ground                           | 16 AWG |
| 24    | SOS                           | Shutoff Solenoid                                          | 20 AWG |
| 25    | EGT (-)                       | Exhaust Gas Temperature Input                             | 20 AWG |
| 26    | Not Used                      | NA                                                        | NA     |
| 27    | Mag Pickup Input              | Magnetic Speed Pickup Input                               | 20 AWG |
| 28    | Knock Sensor System           | 0 - 5 V DC (Optional) Ground to Pin 34                    | 20 AWG |
| 29    | Not Used                      | NA                                                        | NA     |
| 30    | Not Used                      | NA                                                        | NA     |
| 31    | CAN High                      | CAN High Signal                                           | 20 AWG |
| 32    | CAN Low                       | CAN Low Signal                                            | 20 AWG |
| 33    | CAN Termination               | CAN Termination Resistor (when tied to CAN High - Jumper) |        |
| 34    | Battery Ground                | Battery Ground                                            | 16 AWG |
| 35    | Battery                       | 12/24 V DC Battery Power with 20 A fuse                   | 16 AWG |
| NOTES |                               |                                                           |        |

Not all of connections may apply to your application. Unpopulated table entries represent unused connector pins. Twisted pair groupings are represented by letters. 2. 3. 4.

1.

Wire the GC1000 through a switched (On / Off Switch) DC power source of 12 to 32 V DC and circuit protected with a 20 A fuse or circuit breaker.

# 13 GC1000 DUAL-FUEL WIRING (CONTINUED)

# PIN 2, 13, 23 RS-232 COMMUNICATION

Connect the RS-232 (GAC P/N: EC1516) to the GC1000 to following this table. The DB9 connector is connected to the computer.

| GC1000 PIN | DB9-F PIN |
|------------|-----------|
| 2          | 5         |
| 13         | 2         |
| 23         | 3         |

# PIN 8, 9, 21, 22 STEPPER MOTOR FUEL CONTROL VALVE VFC106

The VFC106 fuel control valve with inline stepper motor uses a high-resolution bipolar stepper motor to control the fuel being added to the system. The VFC106 has two separate coils (A and B) EXTEN which, when provided the correct signal in the correct orientation, move the valve clockwise (extend) or counter-clockwise (retract).

The System Tuning S-Stepper control logic table in SmartVU details the stepper motor input combinations for operation.

|    | STEPPER MOTOR CONTROL LOGIC |            |             |            |             |         |
|----|-----------------------------|------------|-------------|------------|-------------|---------|
| ND | PHASE                       | A<br>PIN A | /A<br>PIN B | B<br>PIN C | /B<br>PIN D | RETRACT |
|    | 1                           | +          | -           | +          | -           | 1       |
|    | 2                           | +          | -           | -          | +           |         |
| ♦  | 3                           | -          | +           | -          | +           |         |
|    | 4                           | -          | +           | +          | -           | •       |
|    |                             |            |             |            |             |         |

### PIN 1 AND 24 GAS SHUTOFF SOLENOID (SOS)

The gas shutoff solenoid (SOS) valve gives the gaseous controller authority over gas flow into the regulator increasing over-all safety and performance. Signals from the GC1000 control the valve. The valve will automatically close if overspeed or exhaust temperature is exceeded or power is lost or no speed signal is available.

# PIN 5, 6 AND 7 LOAD SIGNAL

Load Signal, the amount of requested load in 0 - 5 V DC output, is provided by either a Current Transformer (CT) or a Boost Pressure Sensor. The Load Signal provides a signal representing load to the GC1000 controller. This signal is reported on the SmartVU main screen and is used to set the stepper motor gaseous increases in the System Tuning table. The CT determines load from the generator and the Pressure Sensor provides load based on turbo pressure.

### PIN 34 AND 35 BATTERY POWER

Wire the GC1000 through a switch (On/Off) DC power source of 12 to 32 V DC and fused for 20 A. Terminals 34 (battery ground) and 35 (battery 12/24 V DC) connect to the battery.

# PIN 12 AND 27 MAGNETIC SPEED PICKUP SENSOR

The magnetic speed pickup monitors engine speed by counting flywheel teeth. The output signal is an AC sine wave whose frequency is converted to crankshaft revolutions per minute (rpm) via the input flywheel teeth value. The installation gap between the sensor and flywheel teeth must be minimized to create the most usable speed signal. Typically this frequency is in the several thousand Hz range at rated speed. The exact number of flywheel teeth is set using **SmartVU**.

# PIN 18 MALFUNCTION INDICATOR OUTPUT (OPTIONAL)

The malfunction indicator output is triggered to match the FAULT LED. This output can drive a 12 V DC indicator where one side is connected to ground and the max current is 2 A.

# PIN 19 AND 25 EXHAUST GAS TEMPERATURE

Exhaust Gas Temperature (EGT) sensor monitors a type K thermocouple to measures engine exhaust gas temperature. If the temperature limit set in SmartVU is exceeded during operation, the GC1000 reduces the VFC gaseous flow by the configured amount, retires and shuts down if engine temperature condition does not improve.

# PIN 28 AND 34 KNOCK SENSOR SYSTEM (OPTIONAL)

A knock sensor system is an optional input that if used will automatically shut down gas flow to the system if knock system triggers are encountered. The GC1000 controller is pre-programmed to shutdown on knock sensor notification. A knock sensor error displays a blinking yellow LED and the error is recorded in the Diagnostics Log available on the SmartVU Options-Diagnostics-Logging screen. The knock sensor uses a common ground (Pin 34).

# PIN 31, 32, 33 CAN / J1939

The GC1000 is not designed to be the end-of-line device on a CAN bus. If the GC1000 is located at the end of the CAN bus, use a 120  $\Omega$  termination resistor across CAN H and CAN L. CAN bus applications require a matching 120  $\Omega$  resistor at the other end of the bus for a total parallel resistance of 60  $\Omega$ . GC1000 CAN output supports J1939 protocol for basic engine sensor information and Diagnostic Trouble Codes (DTCs). Jumper pins 31 and 33 to use the internal 120  $\Omega$  resistor.

# 14 GC1000 LED CODES

The GC1000 has both a general LED display and a blink code for use when a computer is not available.



| COUNT | ALARM/WARNING                                       |
|-------|-----------------------------------------------------|
| 1     | Not Used                                            |
| 2     | Engine Speed Input Circuit Malfunction or No Signal |
| 3     | Engine Overspeed occurred                           |
| 4     | Not Used                                            |
| 5     | Not Used                                            |
| 6     | Not Used                                            |
| 7     | Not Used                                            |
| 8     | Not Used                                            |
| 9     | Not Used                                            |
| 10    | EGT sensor over configured temperature limit        |

| LED     | COLOR          | LED STATE           | DEFINITION                                                                                                          |
|---------|----------------|---------------------|---------------------------------------------------------------------------------------------------------------------|
| 1       | Yellow         | OFF                 | While engine is running, indicates no new entries in the alarm / warning history.                                   |
|         |                | ON                  | EGT is open. Indicates malfunction has been logged or indicates a bad sensor.                                       |
|         |                | BLINKING            | A warning or shutdown is active. The light turns off when the condition is gone and the unit has been power cycled. |
| 2       | Red            | BLINKING            | Unit is changing fuel valve position.                                                                               |
|         | Red            | ON                  | Valve not moving                                                                                                    |
| 2       | Croop          | OFF                 | Unit is not powered on.                                                                                             |
| 3 Green | ON             | Unit is powered on. |                                                                                                                     |
| 2/3     | Red +<br>Green | ON                  | Running and checking fuel valve position.                                                                           |

### **DISPLAYING BLINK CODE HISTORY**

- 1. Power OFF the GC1000.
- 2. Power ON the GC1000, without the engine running
- 3. The fault LED (LED 1) will blink through the entire fault history in reverse chronological order (newest code first, oldest last).

Once the GC1000 has reached the end of the list, it will stop flashing fault codes.

# 15 SMARTVU FOR GC SOFTWARE INSTALLATION

The GC1000 controller and dual fuel system is configured using GAC SmartVU GC Series software. Once SmartVU has been installed, connect the GC1000 controller to the computer using the RS232 communications port. This simple software allows you to tune and modify the system on the fly, as well as creating the turning table that balances gaseous flow into the solution. <u>Previously saved configurations</u> can be loaded to replace the factory settings as detailed in Section 22.



# SMARTVU GC SERIES SOFTWARE INSTALLATION

A computer and internet connection are required to download and run GAC's SmartVU GC Series software. The SmartVU installation file and instructions are found at www.governors-america.com/software-downloads. Download the software file to your PC and make sure you have administrator privileges to install the package. See your IT support for help as necessary. After the installation is complete, note the icon on your desktop.



# **CONNECTING SMARTVU TO THE GC1000**

Before making any changes to the software, ensure the fuel supply is disconnected from the engine prior to performing any of the following configuration procedures. Pressing Stop Engine shuts down the gaseous fuel flow.

Once SmartVU is installed, complete the following:

- Connect a serial port (or USB to serial adapter) to the GC1000 using a pass-through DB9 F/M cable.
- 2. Launch SmartVU GC Series software from the computer.
- 3. Select the GC1000 from Configure → Setup Connection menu. SmartVU will recognize the connected device.
- 4. Adjust any Communications or Modbus settings.
- 5. Click Connect. This will open the SmartVU software.

| Communications |         | Select Type |
|----------------|---------|-------------|
| Comm Port      | 1 🔹     | GC1000      |
| Baud Rate      | 19200 👻 | 6           |
| Data Bits      | 8 👻     |             |
| Stop Bits      | 1 💌     |             |
| Parity         | None 👻  |             |
| Modbus         |         |             |
| Slave Node     | 2 🔻     | GC1000      |

# 16 BASIC CONFIGURATION WITH SMARTVU

Once hardware installation is complete, use SmartVU to set up basic parameter values to start and run the engine. Advanced settings can then be set to further fine tune it to achieve your application objectives. The parameter adjustment and setup order shown here requires the setting A through F are complete before starting your engine. SmartVU provides the ability to STOP the actuator to shut down the engine using the actuator manually or through various maximum settings.

The following is the suggested setup and tuning adjustment order.

# PARAMETER ADJUSTMENT ORDER

- 1 Setup & Safety
- 2 Starting Parameters
- 3 Fixed Speed Parameters
- 4 Variable Speed Parameters
- 5 Engine Data
- 6 Sensors
- 7 Engine Response Parameters Governor
- 8 Engine Response Parameters Fuel
- 1. Adjust each parameter to your best understanding of your engine. Press the **Enter** key after changing each parameter to save the change.
- 2. Click Save Data to Device to update speed controllers memory. The device does not auto-save settings changes. You must use the Save Data to Device button to store changes made to the calibration. Otherwise, the controller will lose any changes since the previous save in the event the power is cycled to the controller.
- 3. It is good practice to save often and after any changes which are final.

# IMPORTANT

SmartVU and the GC1000 do not automatically save settings. Press Enter after each update and press **Save Data to Device** to update the GC1000 memory.



# 17 GC1000 BASIC CONFIGURATION

# STARTING PARAMETERS

| Name                      | Range       | Default | Definition                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------|-------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel<br>Valve<br>Position | 0 -<br>100% | 0       | The % start position on the stepper valve while cranking. This is the initial setting for the amount of gaseous fuel added at startup. The valve will move itself to this position after the unit has been powered up and the valve is calibrated.<br>Once the engine speed passes crank cutoff, the fuel valve moves to the open loop position dictated by the fuel table. |

### **SETUP & SAFETY**

| Name      | Range                    | Default | Definition                                                                                                                                                                                                                                                               |
|-----------|--------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Overspeed | Application<br>Dependent | 2220    | Set value to maximum allowable engine rpm. The controller uses this value to shut down the gaseous fuel flow as a safety measure. Set the value low enough to prevent overspeed but high enough to allow realistic load rejection speeds without limits engine response. |
| Teeth     | 50-250                   | 120     | Number of teeth on flywheel. The controller uses this information to calculate engine speed:<br>RPM = Hz x 60 / $\#$ of gear teeth. <b>NOTE</b> : <b>You cannot edit this parameter while the engine is running.</b>                                                     |
| Speed     | 0 - 8500<br>Hz           | 1800    | Desired isochronous engine speed. The solution does not control engine speed.                                                                                                                                                                                            |

| CEI | NCO | DC  |
|-----|-----|-----|
| SEI | 120 | KO. |

| OLNOONO           |                        |                                                                                                                                                                                                  |
|-------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name              |                        | Definition                                                                                                                                                                                       |
| Load Signal       | Voltage                | Voltage (0- 5) measured from any sensor that outputs a 0 - 5 0 V DC signal. If the sensor is not 5 V DC see GAC for help in determining another power source determine the shared common ground. |
|                   | LS                     | Actual load measurement in 0 - 5 V DC.                                                                                                                                                           |
|                   | LS Fuel Threshold      | User determine load voltage based on engine capabilities.                                                                                                                                        |
| Temperature       | °C                     | Displays measured exhaust temperature                                                                                                                                                            |
| EGT Sensor Enable | Check box              | Check this box if the exhaust gas temperature sensor is installed and in use. This input must be disabled if the sensor is not installed or the gas valve will default to the shutdown position. |
|                   | Upper Limit            | Temperature (°C) at which gaseous fuel reduction is enabled.                                                                                                                                     |
|                   | Lower Limit            | Temperature (°C) at which gaseous fuel is re-enabled.                                                                                                                                            |
|                   | Fuel Reduction         | Percent (%) of temporary gaseous fuel reduction to control EGT to within specified limit.                                                                                                        |
|                   | Timeout (s)            | Time before derating gaseous fuel flow to engine.                                                                                                                                                |
|                   | Overheated Timeout (s) | Time before shutting down the gas supply if engine does not return to Lower Limit EGT limit in this time duration.                                                                               |

# **ENGINE RESPONSE PARAMETERS - FUEL**

| Name        | Range   | Default | Definition                                                                                                                                                                                                                                                 |
|-------------|---------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S-Tune      | 0 - 100 | 0       | Press the S-Tune button to display the System Tuning window. Use this table to set Load (0 - 5 V DC) to RPM axis values and the percent of gaseous fuel added at each load step. Fuel valve position can be adjusted over the engine speed and load range. |
| Requested % | -       | 0       | Edit the S-Tune value for a single cell (speed/load), does not affect any other cell on table.                                                                                                                                                             |
| Actual %    | -       | 0       | This displays the actual % opening of gaseous fuel valve position.                                                                                                                                                                                         |
| Offset      | -       | -       | Displays the difference between the actual and requested % in System Tuning table.                                                                                                                                                                         |

### **ENGINE DATA**

Engine data displays the actual versus requested speed based on the number of teeth and frequency (Hz) read by the magnetic speed pickup sensor.

| Actual RPM | Requested RPM | Shutdown Valve Duty Cycle | Mag Pickup (Hz) |
|------------|---------------|---------------------------|-----------------|
|            |               |                           |                 |

# **18 STARTING THE ENGINE**



STOP Engine conducts an emergency shutdown of gaseous fuel to the engine. It does not shut down the engine.

### IMPORTANT

Starting Parameters and Setup & Safety are required settings prior to engine startup. LS Fuel Threshold is displayed when Options-Advanced menu is selected.

Before tuning the system to include dual fuel, first create a stable diesel-only run engine by completing basic speed and fuel tuning. Once the engine is running smoothly you can continue to tune to support dual fuel. Do not use the tuning table when first starting the engine.

GAC recommends tuning to a daily fixed working speed, not idle speed. These procedures set a baseline, not the final solution. Once the engine is running smoothly on diesel fuel you will use SmartVU to create a table to introduce gaseous fuel, ensuring smooth transition at each point.

### **INITIAL STARTUP AND REVIEW PROCEDURE**

- 1. Start the engine, running diesel fuel only. Using a multimeter, monitor Voltage and Amps to the diesel actuator / governor.
- Add load to the engine in incremental steps to monitor the diesel actuator for reference. Record the actuator voltage or current to better understand your specific engine. Best practice: Record this information for ease of creating a gaseous introduction table later.
- 3. Remove the load from the engine
- 4. Turn on the gaseous fuel source and check for leaks.
- 5. Determine if you want to start with gaseous fuel added or with just diesel fuel.

# 19 CREATING THE GC1000 SYSTEM TUNING TABLE

The System Tuning table sets the percent the stepper motor opens the gaseous fuel (valve) to allow gas into the system. This section details the steps used to setup and check for the most accurate gaseous ratio for your engine.

### WHAT YOU WILL NEED

Actuator input must be measured to make accurate settings. This section requires measuring actuator voltage and/or current using a multimeter. Depending on your system an alternate measurement such as a fuel flow meter for a mechanical governor may be required. The ability to add load to the system is also required. The following examples use voltage readings to explain the process. Your measurement tool may vary.

# INITIAL SETUP SYSTEM WITH TUNING TABLE

Once the system is installed, complete the following steps while the engine is running.

- 1. With the engine running, open the SmartVU GC1000 application. [1]
- 2. If not already done, complete the basic configuration setup.
- 3. Click S-Tune on the main page to display the System Tuning table.
- 4. Click Set Speed on the System Tuning menu.



### SET RPM ROW INFORMATION.

- 1. Based on your engines expected load settings, enter low RPM in line 1 and high RPM in line 8. [2]
- 2. Click Distribute. The system will automatically fill in the rest.
- 3. If required, edit the individual RPM cells suite your needs.
- 4. Click OK to save.

IMPORTANT



2

SmartVU and the GC1000 do not automatically save settings. Press Enter after each update and press **Save Data to Device** to update the GC1000 memory.

### **READING THE TABLE - LS AND PERCENT GAS SETTINGS**

Once the initial RPM settings are added and S-Tune has been pressed, the base table is created.

- The green Connected bar indicates the system is connected.
- In example [3] the table has not been set up; the stepper motor is inactive; zero
  percent of gaseous fuel is being used.
- The LS (CT) reading is 11. No load operation is 100% diesel fuel.
- GAC suggests measuring actual actuator voltage or current measurements using a multimeter or a fuel flow meter if the engine uses a mechanical governor.

# CALCULATE VOLTAGE AT LOAD WITH DIESEL

The next steps is to determine the voltage output at each load on just diesel fuel. This information is used to determine what percent of gaseous fuel should be added to support load.

- 1. Start the engine with diesel fuel only.
- 2. For each major load measure and record voltage.
- 3. Track this information in a table similar to [4].

| 1      |    |         | Load Sign      | al (LS)        |         |         | Set LS  | STOP           |
|--------|----|---------|----------------|----------------|---------|---------|---------|----------------|
| RPM \  | LS |         |                |                |         |         |         |                |
| ▶ 1000 | 15 | 28<br>0 | <b>40</b><br>0 | <b>53</b><br>0 | 65<br>0 | 78<br>0 | 90<br>0 | Fuel           |
| 1400   | 0  | 0       | 0              | 0              | 0       | 0       | 0       |                |
| 1500   | 0  | 0       | 0              | 0              | 0       | 0       | 0       | Fuel Valve     |
| 1600   | 0  | 0       | 0              | 0              | 0       | 0       | 0       | Actual Positio |
| 1700   | 0  | 0       | 0              | 0              | 0       | 0       | 0       | 0              |
| 1800   | 0  | 0       | 0 00           | 0              | 0       | 0       | 0       |                |
| 1900   | 0  | 0       | 0              | 0              | 0       | 0       | 0       |                |
| 2200   | 0  | 0       | 0              | 0              | 0       | 0       | 0       |                |

| Λ |              |                            |
|---|--------------|----------------------------|
| 4 | Percent Load | Actuator V DC, 100% Diesel |
|   | 100          | 6.2                        |
|   | 75           | 5.2                        |
|   | 50           | 4.6                        |
|   | 25           | 3.7                        |
|   | 0            | 3.1                        |
|   |              |                            |

### SET LS ROW - CALCULATE LS USAGE

The numbers in the LS column are based on the LS (100 A, 0.5 V) being used. In figure 5 the 100 represents the LS amperage. The numbers used in this table regulate gas flow based as a function of LS. The more precise this information the better the results.

To set the LS row numbers to more accurately match to the actual engine measurements, complete the following:

- Start the engine on diesel only. Note the green table cell in [5]. This indicates the speed/load operating point. In this example, 1800 RPM at no load.
- Add 100% load to the system [6]. The green table cell indicator moves to 1800 at the 58 column. The actual reading in the Fuel LS pane to the left indicates 63.
- 3. Click the Set LS button [7]. Enter the upper end number (65 in this example) in the last cell.
- 4. Click Distribute and OK to place the new number in the table.
- 5. Still at 100% load, the green cell [8] moves to the end of the table. This increments the resolution of the table.
- 6. Remove the load from the engine.
- 7. Use the **Save Data to Device** button on the Main menu when done. The device does not save automatically.





1. Click **Save Data to Device** to update speed controllers memory. The device does not auto-save settings changes. You must use the **Save Data to Device** button to store changes made to the calibration. Otherwise, the controller will lose any changes since the previous save in the event the power is cycled to the controller.

5

6

7

8

2. It is good practice to save often and after any changes which are final.

3. A configuration file can be saved for future using File  $\rightarrow$  Save Config To File on the Main menu.

### IMPORTANT

# CALCULATING GASEOUS PERCENT

The dual fuel conversion system uses a gaseous stepper motor percent (System Tuning) table to set the percent of gaseous fuel introduced to support each load change. Measuring actuator voltage at basic loads on diesel fuel only we can calculate the target voltage or amperage to limit diesel fuel at  $\leq$  30%. This target voltage (amperage) can also be measured) we determine the percent of gaseous fuel to add using the stepper motor (VFC106). This percent increase is stored in the System Tuning table.

The following table is an example of measurements and calculations taken for a 125 kVA engine with a 30% diesel and 70% gaseous ratio. The formula used to calculate this information is detailed below the table. The basic load measurements and calculations should be made prior to installing the dual fuel solution. Voltage target represent the 30% gaseous not to exceed limits.

| Percent<br>Load | Actuator Voltage<br>100% Diesel | Target Voltage<br>30% Diesel | Actuator Amps<br>100% Diesel | Target Amps<br>30% Diesel |
|-----------------|---------------------------------|------------------------------|------------------------------|---------------------------|
| 100             | 6.2                             | 4.03                         | 1.9                          | .78                       |
| 75              | 5.2                             | 3.73                         | 1.7                          | .72                       |
| 50              | 4.6                             | 3.55                         | 1.1                          | .54                       |
| 25              | 3.7                             | 3.28                         | .8                           | .45                       |
| 0               | 3.1                             |                              | .3                           |                           |



1. Actuator Voltage at Full Load – Actuator Voltage No Load = Voltage (current) Operating Range

- 2. Operating Range \* 30% = Base Point
- 3. Base Point + Actuator Voltage at No Load = 30% Target Max Diesel Fuel Set Point

### The calculation formula is the same for amperage and voltage.

# CALCULATE TARGET VOLTAGE CALCULATE TARGET AMPERAGE 1. 6.2 - 3.1 = 3.1 1. 1.9 - 0.3 = 1.6 2. 3.1 × .30 = 0.93 2. 1.6 × .30 = 0.48 3. 0.93 + 3.1 = 4.03 3. 0.48 + 0.3 = 0.78 4.03 = Target V DC with 30% diesel and 70% gaseous fuel at 100% load 0.78 = Target Amp with 30% diesel and 70% gaseous fuel at 100% load

# ADD GASEOUS INCREMENTS TO TABLE

The System Tuning table sets the percent of gaseous fuel added by the VFC stepper motor related to each change in load as represented by the LS column supporting the measured load change.

- 1. Connect the multimeter to the actuator, or your preferred voltage measurement tool, and position it to be easily read while you set up the System Tuning table.
- Under no load, note the green cell on the table [9] in the LS 15 column and LS reads 18. The voltage reading on multimeter is 3.12 [9]. The zeros (0) in the table indicate no gaseous fuel has been added.
- 3. Add 100% load to the engine. Note the green cell [10] has moved to the last LS 65 column and the LS reads 63.
- 4. Remove the load.

- 5. Start adding gaseous fuel by selecting either the first or second column and entering the percent of gaseous fuel to be added by the stepper motor.
- Select the LS 23 column and enter 5. In this example [11] the first column is set to zero to create an initial startup of diesel only (0%) and 5% as initial startup gaseous fuel.
- Add 100% load to the engine and note the voltage reading. The actuator voltage reads 4.29 VDC. As determined earlier in Calculating Gaseous Percent the target voltage for 100% load is 4.0.
- 8. Select the 5 and change it to 7 [12], increasing the stepper motor opening and percent of gas added to move closer to the target voltage.
- 9. The voltage reading is now 4.01, putting it at target voltage.













# IMPORTANT

SmartVU and the GC1000 do not automatically save settings. Press Enter after each update and press **Save Data to Device** to update the GC1000 memory.

# ADD GASEOUS FUEL INCREMENTS TO TABLE (CONTINUED)

Each table column is updated based on the voltage (or current).

- 10. Select LS columns 23 and higher to set the base percent to 7 [12] [13]. This creates a base gaseous flow.
- 11. Change load to 50%.
- 12. Note the green cell is in the 32 LS column [13]. Note the **Calculating Gaseous Percent** target voltage for 50% load is 3.5 and 4.0 for 100% load.
- 13. Note actual voltage is 4.29 [14].
- Select the 32 LS column, enter an estimated % of gaseous fuel to support 50% load - adding 12% brings the voltage to 4.2. Update to the cell to 15 and note the voltage is now 4.1. [15]
- 15. Update the cells to 17 and the voltage reading is 3.6 making it near target. [15-16]





| File                         | Options              |                        |                                       |                            |                                         |                                       |                                         |                                  |
|------------------------------|----------------------|------------------------|---------------------------------------|----------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|----------------------------------|
| Contraction of the second    |                      |                        |                                       |                            |                                         |                                       |                                         | at I S                           |
| FLUKE 87 2 THE AND MALTANTER |                      |                        |                                       | Load Sign                  | al (LS)                                 |                                       |                                         | ALL J                            |
| 7000                         |                      | _                      |                                       |                            |                                         |                                       |                                         |                                  |
|                              | PW / L               | 5                      |                                       |                            |                                         |                                       |                                         |                                  |
|                              | PMAL                 | 15                     | 23                                    | 32                         | 40                                      | 48                                    | 57                                      | 65                               |
| 360 1                        | 1000                 | 15<br>0                | <b>23</b><br>7                        | 32<br>15                   | <b>40</b><br>7                          | <b>48</b><br>7                        | <b>57</b><br>7                          | <b>65</b><br>7                   |
|                              | 1000<br>1400         | 15<br>0<br>0           | <b>23</b><br>7<br>7                   | 32<br>15<br>15             | <b>40</b><br>7<br>7                     | <b>48</b><br>7<br>7                   | <b>57</b><br>7<br>7                     | 65<br>7<br>7                     |
|                              | 1000<br>1400<br>1500 | 5<br>0<br>0<br>0       | 23<br>7<br>7<br>7<br>7                | 32<br>15<br>15<br>15       | <b>40</b><br>7<br>7<br>7<br>7           | <b>48</b><br>7<br>7<br>7<br>7         | 57<br>7<br>7<br>7<br>7                  | 65<br>7<br>7<br>7<br>7           |
|                              | 1000<br>1400<br>1500 | 15<br>0<br>0<br>0<br>0 | 23<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 32<br>15<br>15<br>15<br>15 | <b>40</b><br>7<br>7<br>7<br>7<br>7<br>7 | 48<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | <b>57</b><br>7<br>7<br>7<br>7<br>7<br>7 | 65<br>7<br>7<br>7<br>7<br>7<br>7 |

 Fuel

CT 



|     | 17. Keeping the next rows at the minimum of the previous |
|-----|----------------------------------------------------------|
|     | row settings creates a more accurate reading as you tune |
|     | forward.                                                 |
| 17. | Continue to review and update each column [17], viewing  |

the actuator setting and aiming for the target voltage reading.

16. Highlight the 40 LS and higher columns [16] and update to

- 18. To fine tune the system go back over the table cells and change engine load to 50% or 25% and re-take the voltage readings, further updating the stepper motor position to provide more accurate step changes.
- 19. Use the Save Data to Device button on the Main menu when settings are complete to save the data.
- 20. To store settings in a reuseable file, At Main Menu in Smart-VU select File  $\rightarrow$  Save Config To File from the top menu bar.
- 21. Choose a directory on your PC to save the file to and name it accordingly.
- 22. Press the Save button.

# 20 DEVICE MONITOR

The device monitor is a visual view of the engines workload.

To display the device monitor, select Options  $\ \rightarrow$  Device Monitor from the menu, or press Ctrl + B.

The device monitor can be used to display the relationship between the stepper motor and fuel mixture.

**Speed** monitor displays engine speed based on the measured magnetic pickup frequency.

**Fuel Valve** monitor displays the commanded fuel valve position from 0 - 100 % and allows an adjustable time base for all real-time monitor graphs.

| Adjust time<br>Base |   |  |  |  |  |  |  |
|---------------------|---|--|--|--|--|--|--|
| -                   | + |  |  |  |  |  |  |

Adjust the time scale to zoom in or out.

# 21 ERROR CONDITIONS AND DISPLAYS

Errors are noted through the GC1000 units LED displays and logged in the diagnostic log of the SmartVU software.

Errors can also displayed with an external indicator such as a strobe light or other visual or audible indicator using the Malfunction Indicator Lamp (MIL).

Diagnostic error codes related to the LEDs and other internal codes display in the Diagnostic screen on the Diagnostics screen of GC SmartVU.

When an EGT error occurs the system will make three (3) attempts to allow the system to cool down, measuring temperature each time and logging an error each time the system has is not within set parameters, finally shutting down the system. This creates multiple errors in the log.

If using an optional knock sensor system, the error from the sensor will be logged in the GC1000 SmartVU diagnostic log. The knock sensor may also cause the engine to shut down.

| <b>NOTE:</b> THE GC1000 system controls gaseous flow, not speed. Speed is controlled by the governor on the ( |
|---------------------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------------------|

# 22 SAVING AND LOADING CONFIGURATION FILES

SmartVU can save and load tables and settings to or from a file. This allows the user to quickly restore an existing installation or startup a new one once the calibration for the engine has been completed. The configuration is stored within the module itself; SmartVU writes / reads the values to a file so that you do not need to manually enter all of the calibration data individually on subsequent engines.

### To Save a Configuration File

- 1. At Main Menu in SmartVU select File → Save Config To File from the top menu bar.
- 2. Choose a directory on your PC to save the file to and name it accordingly.
- 3. Press the Save button.

### To Load a Configuration File

- 1. At Main Menu in SmartVU select File → Open Config From File.
- 2. Locate the configuration file (\*.cfg) which matches the engine / application you are working on and press Open.
- 3. Once complete, verify that the correct values have loaded and that the system is tuned properly.



-

|   | ID    | Description                                                   | Time  |
|---|-------|---------------------------------------------------------------|-------|
| • | G9006 | Diagnostic Logging Cleared                                    | 54:18 |
|   | P0545 | Exhaust Gas Temperature Sensor Circuit Low (Bank 1 Sensor 1)  | 54:18 |
|   | P0545 | Exhaust Gas Temperature Sensor Circuit Low (Bank 1 Sensor 1)  | 54:18 |
|   | P0546 | Exhaust Gas Temperature Sensor Circuit High (Bank 1 Sensor 1) | 54:18 |
|   | G9021 | Exhaust Gas Temperature Sensor Shutdown                       | 54:18 |
|   | P0546 | Exhaust Gas Temperature Sensor Circuit High (Bank 1 Sensor 1) | 54:18 |
|   | G9021 | Exhaust Gas Temperature Sensor Shutdown                       | 54:18 |
|   | P0546 | Exhaust Gas Temperature Sensor Circuit High (Bank 1 Sensor 1) | 54:18 |
|   | P0546 | Exhaust Gas Temperature Sensor Circuit High (Bank 1 Sensor 1) | 54:18 |
|   | G9021 | Exhaust Gas Temperature Sensor Shutdown                       | 54:18 |

# 23 SUPPORTED FAULT CODES

The GC1000 stores a chronological list of diagnostic troubles codes (DTCs). The controller communicates malfunction P-codes, G-codes, and SPN codes. P-codes relay engine and sensor malfunctions and decreases in system performance. These issues may cause poor fuel consumption and excessive emissions output as well as potential engine issues. G-codes show governor system specific malfunctions. These codes can be ready by a JDR or other J1939 reader.

# SUPPORTED DTC G-CODES

| G-CODE | DEFINITION                   | POTENTIAL FAILURE CAUSE                                                         |
|--------|------------------------------|---------------------------------------------------------------------------------|
| G9002  | User Emergency Shutdown      | User has commanded shutdown in SmartVU (Stop button)                            |
| G9004  | Reload System Defaults       | User has reloaded the calibration / configuration defaults in SmartVU           |
| G9005  | Diagnostic Timer Reset       | User has reset the diagnostic timer in SmartVU                                  |
| G9006  | Diagnostic Logging Cleared   | User has reset / cleared the diagnostic fault code log                          |
| G9021  | EGT MAX Temperature Shutdown | Exhaust gas temperature maximum limit reached and engine commanded to shut down |
| G9017  | Watchdog timer fault         | Software failure. Reset system.                                                 |
| G9028  | EEPROM Corrupted             | Initialization failure. EEPROM setting check failure.                           |
| G9088  | Serial communications issue  | Error in serial communication. Check connector.                                 |

### SUPPORTED DTC P-CODES

| P-CODE | DESCRIPTION                                                          | POTENTIAL FAILURE CAUSE                                                                                 |
|--------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| P0219  | Engine Overspeed Condition                                           | Engine mag speed pickup signal exceeded operational limit defined in config. Check for defective sensor |
| P0544  | Exhaust Gas Temperature Sensor Circuit Malfunction (Bank 1 Sensor 1) | Open or short circuit in wiring or connector / Poor connection / Defective sensor                       |
| P0545  | Exhaust Gas Temperature Sensor Circuit Low (Bank 1 Sensor 1)         | Open or short circuit in wiring or connector / Poor connection / Defective sensor                       |
| P0546  | Exhaust Gas Temperature Sensor Circuit High (Bank 1 Sensor 1)        | Engine exhaust gas temperature exceeded operational limit defined in config / Defective sensor          |
| P0725  | Engine Speed Input Circuit Malfunction                               | Open or short circuit in wiring or connector / Poor connection / Defective sensor                       |

### **SUPPORTED J1939 PGN**

| PGN   | DEFINITION | SPN  | NOTES                                            | RATE (ms)              |  |
|-------|------------|------|--------------------------------------------------|------------------------|--|
| 2048  |            | 4157 | Auxiliary I/O Channel #4                         | 100                    |  |
| 2040  | AUXIUS     | 4158 | Auxiliary I/O Channel #3                         | 100                    |  |
| 61444 | EEC1       | 190  | Engine Speed                                     | 20                     |  |
| 05070 | IC1        | 102  | Boost Pressure / Current via CT                  |                        |  |
| 05270 |            | 173  | Engine Exhaust Temperature                       | 500                    |  |
| 65271 | VEP1       | 168  | Battery Potential/Power Input 1                  | 1000                   |  |
| 65253 | HOURS      | 247  | Engine Total Hours of Operation                  | 1000                   |  |
| 64914 | EOI        |      | 3543                                             | Engine Operating State |  |
|       |            | 3607 | Engine Emergency (Immediate) Shutdown Indication | 250                    |  |
| 65153 | GFI2       | 1765 | Engine Fuel Valve 1 Commanded Position           | Request                |  |
| 65226 | DM01       | -    | Active Diagnostic Trouble Codes (DTC's)          | 1000                   |  |
| 65227 | DM02       | -    | Previously Active Diagnostic Trouble Codes       | Request                |  |
| 65228 | DM03       | -    | Clear/Reset Diagnostic Trouble Codes             | Request                |  |
| 59904 | RQST       | -    | Request for PGN                                  | Request                |  |

# SUPPORTED J1939 DTC

| JDR TEXT                                | SPN  | FMI | FAULT                                | POTENTIAL CAUSE - ACTION                                         |
|-----------------------------------------|------|-----|--------------------------------------|------------------------------------------------------------------|
| Exhaust Gas                             |      | 0   | Data Above Normal Operation - Severe | Exhaust gas temperature exceeded configured threshold - Shutdown |
| Temperature                             | 173  | 5   | Open and/or malfunctioning circuit   | Open circuit on harness or connector / Failed sensor - Shutdown  |
| Engine Speed                            | 190  | 0   | Open Circuit                         | Engine Overspeed Condition                                       |
|                                         |      | 14  | Over Speed                           | User Emergency Shutdown                                          |
| Engine Multiple<br>Cylinder Knock Level | 7320 | 0   | Data Above Normal Operation - Severe | Knock Alarm Input Triggered                                      |

# CALCULATIONS AND FINAL SETUP



| Equipment: |         |     | Kw Rating:      |     |      |
|------------|---------|-----|-----------------|-----|------|
| Date:      |         |     | Voltage Rating: |     |      |
| Setup By:  |         |     | Engine Make:    |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            | V DC    |     | Tuned To V DC:  |     |      |
| RPM        | No Load | 25% | 50%             | 75% | 100% |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            | 1       | 1   | 1               | 1   | ·1   |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |
|            |         |     |                 |     |      |